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Determination of the Refractive Status of the Eye 1

P5.1
Retinoscope

1. Show that the accuracy of a retinoscope can be determined by the equation

∆D = ∓ λ

d2pupil
. (5.38)

2. Derive the Newton formula

z · z′ = fL · f ′L (5.39)

from the thin lens equation (A12).

Solution:

1. According to Eqs. (2.14) or (6.13), the diffraction limited depth of field ∆zdof is
given by

∆zdof =
λ

2 ·NA2
. (S5.1)

In retinoscopy, the depth of field ∆zdof determines the localizability of the red
reflex within the pupil plane and thereby the principle accuracy of the observer’s
viewing distance Lwd. A change of the working distance within the depth of field
∆zdof does not result in any change of the light/shadow-boundary of the red-reflex
within the pupil plane. Using the working distance Lwd and the pupil diameter of
the patient’s eye dpupil, we have

NA =
dpupil

2 · Lwd

from which we obtain with Eq. (S5.1)

∆zdof =
2 · λ · L2

wd

d2pupil
. (S5.2)

If we are only concerned about the ± depth variation from the ideal median posi-
tion and denote the derivation by ∆Lwd, we have

∆Lwd = ±∆zdof
2

= ±λ · L
2
wd

d2pupil
. (S5.3)

According to Eq. (5.1), a working distance Lwd (in m) corresponds to a refractive
power of

D =
1

∆Lwd
.

Thus, a change in the working distance ∆Lwd results in a refractive power change
of

∆D = −∆Lwd

L2
wd
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and with ∆Lwd from Eq. (S5.3)

∆D = ∓ λ

d2pupil
.

A more thorough treatment, which includes a derivation of Eq. (S5.1), is given in
the appendix to this problem.

2. The thin lens equation (A12) reads

1

s′
− 1

s
=
n′ − n
n

·
(

1

r1
− 1

r2

)
.

Based on the definition of the focal length, when the object is at optical infinity
(s→∞), the image location indicates the focal length (s′ = f ′), therefore

1

s′
∣∣
s→∞

=
1

f ′
=
n′ − n
n

·
(

1

r1
− 1

r2

)
.

Correspondingly, we obtain in the case of an image at optical infinity

1

s
∣∣
s′→∞

=
1

f
=
n′ − n
n

·
(

1

r1
− 1

r2

)
and therefore

f = −f ′ . (S5.4)

The lens equation can now be written as

1

s′
− 1

s
=

1

f ′
. (S5.5)

From Figure A6, we can derive the simple relations

s′ = f ′ + z′ ,

s = f + z . (S5.6)

Insertion of Eq. (S5.6) into (S5.5) finally leads to

1

f ′ + z′
− 1

f + z
=

1

f ′

⇒ f ′ ·
(
f + z − (f ′ + z′)

)
= (f + z) · (f ′ + z′)

⇒ zz′ = −f ′2 − z′(f + f ′) .

Because of Eq. (S5.4), we finally get

zz′ = fL · f ′L ,

where we used the index “L” for the lens.
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Appendix to Problem P5.1

We provide here a more thorough treatment of the accuracy of the retinoscope
including the derivation of the depth of focus. The measuring accuracy of the
retinoscope is related to the depth of focus 2∆z. In the wave optical approximation

2θdpupil

f

2 Δz

DAiry

Figure S5.1 Geometry of optical system for the derivation of the retinoscope accuracy.

and in the case of a diffraction-limited imaging quality, the calculations for the
depth of focus can be performed as follows:
The (Fraunhofer approximated) diffraction integral reads in circular coordinates
for rotational symmetry

E(r′, z) = N

∫
E(r) · J0

(
2πrr′

λf

)
rdr

and in a system with a lens with focal length f

E(r′) = N

∫
E0 · exp

(
iπr2

λf

)
· J0

(
2πrr′

λf

)
rdr .

With reference distance z and the corresponding defocus term, we obtain

E(r′, z) = N

∫
E0 · exp

(
iπr2

λf

)
· exp

(
− iπr

2

λz

)
· J0

(
2πrr′

λf

)
rdr .

On the optical axis, we have r′ = 0 so that

E(0, z) = N

dpupil/2∫
0

E0 · exp

(
iπr2

λf

)
· exp

(
−1πr2

λz

)
rdr .

With the approximation for a small defocus value, that is, a small deviation from
the focal plane

1

z
− 1

f
≈ ∆z

f2
,
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we get

E(0, z) = N

dpupil/2∫
0

E0 · exp

(
iπ∆zr2

λf2

)
· rdr .

With the standard integral
b∫

0

e−a
2r2rdr =

1

a2
·
(

1− e−a
2b2
)
,

we obtain

E(0,∆z) = N · E0
λf2

πi d2pupil ∆z
·

[
1− exp

(
−
πi d2pupil ∆z

λf2

)]
.

Using the abbreviation (scaled axial coordinate according to Wolf)

u =
2π

λ
· n2 ·∆z · sin2 θ =

2πn d2pupil ∆z

4λf2
=

2π · n∆z

Ru

and the Rayleigh range

Ru =
λ

n · sin2 θ
=

4f2λ

n · d2pupil

(assuming in paraxial approximation small angles so that sin θ = dpupil/(2f)), it
follows that

E(0, u(∆z)) = E0
1

iu
·
(

1− e−
iu
2

)
.

When calculating of the intensity

I(0, u(∆z)) = E∗(0, u(∆z)) · E(0, u(∆z))n

with
cos(ax) =

eiax + e−iax

2
,

we obtain with u = u(∆z)

I(0, u(∆z)) = I0 ·
sin(u/4)

(u/4)2
= I0 sinc2

(
u

4

)
.

Thus, in the case of defocussing, the intensity decreases according to the sinc-
functions (Figure S5.2). If we defocus in a way that the normalized intensity
I(∆z) = I0 reaches a value of 80 % (corresponding to the Rayleigh criterion
for diffraction limit), we obtain the half interval for the optical depth of focus

∆zf =
u

2π
·Ru =

u

4
· 2

π
·Ru

= 0.80091 · 2

π
·Ru =

0.5150 · λ
n′ · sin2 θ

≈ λ

2n′ · sin2 θ
=
Ru

2
=

2f2λ

d2pupil
.
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In reality, a smaller decrease of the intensity by 20% can be detected by the human
eye. Therefore, one usually assumes half the defocus as detectable

∆zf =
Ru

4
=

f2λ

d2pupil
. (S5.7)

In retinoscopy, the refractive power reads D = 1/f . Now, we get

∆D =
∂D
∂f

∆f = − 1

f2
∆f . (S5.8)

Combining Eq. (S5.7) with Eq. (S5.8) and using ∆f = ±∆zf finally delivers

∆D = ∓ 1

f2
∆zf = ∓ λ

d2pupil
. (S5.9)
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Figure S5.2 sinc2(u) function
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P5.2
Hartman-Shack wavefront sensor

1. The wavefront aberrations for defocus and spherical aberration at a
wavelength of λ = 550 nm of a collimated beam with a diameter of 3 mm
are to be measured with a Hartmann–Shack wavefront sensor. The CCD
detector has a pixel size of 7 µm. With suitable algorithms, the centroid
can be determined to within 1/20th of a pixel. Which focal length should
a microlens have to allow the determination of defocus as a Zernike
coefficient down to λ/20 . How accurately can the Zernike coefficient of
the aperture error be determined for this focal length? What causes this
difference?

2. If the finite size a of the detector elements is taken into consideration,
then in the case of standard evaluation algorithms for the centroids,
the dynamic range of the sensor is given by a spot leaving the surface
assigned to the detector element on the sensor. In a simple geometric
image, what is the extent of the maximal measurable defocus of the above
sensor ifN = 30 elements are assumed across the beam diameter and the
fill factor is set to 1? If you assume that the lenses are diffraction-limited
in the small elements, then finite-sized spots are obtained. What is
the above-calculated maximal defocus when taking diffraction into
consideration? Remember that the detector elements are squared (Figure
5.23).

3. Discuss the influence of different coherence states of the incident signal
wave on the measuring result. What happens if the CCD sensor is posi-
tioned exactly in the focal plane of the microlens array? What is the effect
of using various wavelengths? What happens at the edge of a sharply lim-
ited wave to the signal of partially illuminated detector elements? How
can this problem be solved in practical applications if the intensity of the
waves is constant?

Solution:
1. The wave aberration of the defocus in normalized coordinates is given by

Wdef(r) = c02 · (2r2 − 1) ,

and the gradient of the wavefront is given by the corresponding derivative. In the
Hartmann–Shack wavefront sensor, the inclination of the wavefront or the angle
θ of the center of gravity beam in a sub-aperture is the decisive measure for the
spot offset ∆x. In this context, please refer to Figure S5.3. The direction of the
normal line and/or the inclination of the wavefront is given by the derivative with
respect to position, that is,

dWdef

dr = 4r · c02 .
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Figure S5.3 Optical arrangement of a Hartmann–Shack wavefront sensor.

This gradient has a maximal value at the edge (r = 1) determined by

dWdef

dr

∣∣∣∣
max

= 4c02 . (S5.10)

In analogy, the aperture error is given by

Wsph(r) = c04 · (6r4 − 6r2 + 1) ,

dWsph

dr = c04 · (24r3 − 12r) ,

dWsph

dr

∣∣∣∣
max

= 12 · c04 . (S5.11)

Let the center beam in the Hartmann–Shack sensor incline an angle θ with the
optical axis. Assume the sub-apertures of diameter a to be small as compared to
the diameter d. Then, at the edge of the sensor of beam diameter d, we have

θ ≈ tan θ =
∆x

f
=

λ

d/2
· dWdef

dr

∣∣∣∣
max

, (S5.12)

where we used the spot offset ∆x and sub-aperture lenses with a focal length f .
Here, the pre-factor 2 λ/d comes into play as the wave aberration is normalized
for λ in the Zernike representation in the pupil radius, that is, the beam radius
is normalized to 1. The normalization is required in order to obtain absolute units.

Using the pixel size p = 7 µm, it follows that ∆xmin = p/20, and the focal
length follows from Eqs. (S5.12) and (S5.10) as

f =
∆x · d

2λ · dWdef
dr

∣∣∣
max

=
p · d

40 · λ · 4c02 min
= 4.77 mm . (S5.13)
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Accordingly, the accuracy of the determination of the aperture error is

c04 min =
p · d

12 · 40λ · f = 0.0167 =
1

60
.

As the wave surface of the spherical aberration has a 3-fold larger slope than
the defocus error at the edge (also evident from a comparison of Eqs. (S5.10)
and (S5.11)), the gradient-based measuring method used in the Hartmann–Shack
sensor is more sensitive by the same factor.

2. If the number of sub-apertures is N = 30, their diameter is given by

a =
d

N
= 0.10 mm .

The maximum measurable defocussing can be obtained from Eqs. (S5.10) and
(S5.13) for ∆x = a

2 as

c02 max =
a/2 · d
8λf

= 14.2 . (S5.14)

This corresponds to the angle θmax in Figure S5.3. The numerical aperture of a
sub-aperture is

NA =
a/2

f
= 0.021

and, accordingly, the diameter of the point-spread function PSF (analogous to
Airy, without the factor 1.22) for a square aperture is

dPSF =
λ

NA
= 0.0262 mm .

Correcting themaximumpermissible offset of the spot in Eq. (S5.14) by this value,
the maximal value of the measurable defocussing decreases to

c02 max =
(a/2− dPSF) · d

8λf
= 6.8 .

The reason for making this correction is that the solely geometrical consideration
presented above “looks” at the centers of the spots only. However, the spots do
in fact have a finite dimension due to diffraction and, for analysis of the centers
of gravity, the spots must still be resolved. According to the Rayleigh criterion,
they have a distance from each other that corresponds approximately to the Airy
diameter.

3. When a coherent wave is incident on the wavefront sensor, each individual spot
will be nearly diffraction-limited and has a corresponding diffraction structure.
The pixel-related discrete representation of the sensor must be sufficiently small
such that these intensity distributions can be recorded with sufficient accuracy
and analyzed with regard to the center of gravity. If the incident light is partially
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coherent, the individual spots are broadened and have a less fine structure due to
diffraction on the edges of the sub-apertures. This reduces the dynamic range,
but the analysis of the center of gravity tends to become more accurate and more
robust. However, one needs to remember that partially coherent light does not
have an unambiguous phase. Hence, in this case, the wavefront sensor measures
a direction of the Poynting vector that is averaged over the sub-aperture and all
spectral components.

If the sensor is not positioned exactly in the focal plane (Figure S5.3), the angle-
position deviation relationship of the exact Fourier setup is disturbed. The an-
alytical equations are then no longer exactly correct. However, since these are
still used in the typical case, the procedure interprets the produced error as the
defocussing portion of the incident wave. In accordance with Figure S5.4a, the
deviations of the center of gravity normalize evenly and, in the ideal case, there
is no interference with the higher-order aberration terms. According to Figure
S5.4b, errors occur on the edges of partly illuminated sub-apertures.

If various wavelengths are to be processed simultaneously by the same sensor
(e.g., white light), this means that we have a partly coherent beam. On the other
hand, the chromatic longitudinal aberration of the array lenses leads to a small
degree of defocussing in the wavefront sensor. However, according to the discus-
sion presented above, there are no problems associated with this type of sensor
except for edge effects and a small defocus error.
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Figure 5.4 Even normalization of the deviations of the center of gravity.
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P5.3
Aberrometry

Figure (5.28) shows the ocular wavefront table measurement as obtained by
a ZEISS i.Profiler®plus. In the red box, the determined Zernike coefficients
for an eye with a pupil diameter of 3.0mm (analysis aperture) are listed in
micrometer up to the order n = 4. On the left, the calculated metric values
are shown:
1. Calculate the spherocylindric refraction values (polar notation) for a

vertex distance of 12 mm.

2. Calculate the root mean square wavefront error RMSwfe for the lower-
order aberration (n = 2), higher-order aberration (n > 2), and the total
RMSwfe.

Solution:

1. The spherocylindric refraction values (polar notation) are given by Eqs. (5.27) to
(5.29), that is,

sph = −
4
√

3
(
c02
)

r2
+

cyl
2

, (5.27)

cyl = −
4
√

6
√(

c−22

)
2 +

(
c22
)
2

r2
+

cyl
2

, (5.28)

axis =
1

2
arctan

(
c−22

c22

)
. (5.29)

From the screenshot (Figure 5.28), we can read

c−22 = z(2,−2) = +0.05 µm

c22 = z(2,+2) = −0.14 µm

c02 = z(2, 0) = +0.054 µm

and r = 1.5mm, which denotes the radius of the so-called analysis aperature. We
then obtain

sph = 0.49 D ,

cyl = −0.65 D ,

axis = −9.8◦ + 180◦ ≈ 170◦ .

These values actually refer to the plane of measurement of the aberrometer, that
is, the entrance pupil of the patient located about 3 mm behind the corneal vertex.
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If we want to calculate the sphero-cylindrical values for a correcting eyeglass in
vertex distance (i.e., plane of the back vertex of the eyeglass), we can use

D′v(Lc2) =
D′v(Lc1)

1 +D′v(Lc1) · (Lc2 − Lc1)
(5.36)

in which Lc1 = 0.003m, Lc2 = 0.012m, and D′v(Lc1) = sph = 0.49D.
However, because of the relatively small sphero-cylindrical refraction values, the
correction coming from Eq. (5.36) is negligible in this case.

2. According to Eq. (5.22), the root mean square wavefront error can be calculated
via

RMSwfe =

√ ∑
n>1,m

(cmn )2 .

Although Eqs. (5.22) and (5.23) use cmn with two indices instead of cj with one
index, a sum of cmn is equivalent to a sum of cj . Hence, we have∑

n>1,m

cmn =
∑
j

cj .

The transform betweenm, n and j is based on Eq. (5.20) (see also Table A3) and
given by

j =
n2 + 2n+m

2
.

j 0 1 2 3 4 5 6 7 8
n 0 1 1 2 2 2 3 3 3
m 0 -1 1 -2 0 2 -3 -1 1
cj - 0.050 -0.054 -0.140 -0.029 -0.001 -0.040
(µm)

With the results above and the definitions of Table A3, we can calculate the
RMS of the lower-order aberrations (LOA) (j = 3...5) via

RMSwfe (LOA) =

√√√√ 5∑
j=3

(cj)2

=
(√

(0.050)2 + (−0.054) + (−0.140)2
)

µm = 0.016 µm .

The RMS of the higher-order aberrations (HOA) (j = 6...14) follows as

RMSwfe (HOA) =

√√√√ 14∑
j=6

(cj)2

=
(√

(−0.029)2 + (−0.001)2 + (−0.040)2 + (0.011)2 + ...
)

µm = 0.05 µm .
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The total wavefront error is given by (j = 3 ... 14)

RMSwfe,tot =

√√√√ 14∑
j=3

(cj)2 = 0.17µm .

The result shows that the major contribution to the RMS of the wavefront error
stems from lower-order aberrations.


	Determination of the Refractive Status of the Eye
	Retinoscope
	Hartman-Shack wavefront sensor
	Aberrometry


